
Chapter

8 Merge-Sort and Quick-Sort

Separable Fastener, U.S. Patent 1,219,881, 1917.

Public domain image.

Contents

8.1 Merge-Sort . 243

8.2 Quick-Sort . 250

8.3 A Lower Bound on Comparison-Based Sorting 257

8.4 Exercises . 259

242 Chapter 8. Merge-Sort and Quick-Sort

Recall that in the sorting problem, we are given a collection of n comparable

items and we are asked to place them in order.

Efficient sorting algorithms have a wide range of applications, including uses

in the underlying technologies behind Internet search engines Sorting arises, for

example, in the steps needed to build a data structure that allows a search engine

to quickly return a list of the documents that contain a given keyword. This data

structure is known as the inverted file.

Given a collection of documents (such as the web pages found by a search

engine when it was crawling the web), an inverted file is a lookup table that matches

words to the documents containing those words. It is indexed by keywords found in

the document collection and it includes, for each keyword, a list of the documents

where that keyword appears. This lookup table allows the search engine to quickly

return the documents containing a given keyword just by doing a lookup for that

keyword in the table.

The data is not given in this format, however. In fact, it starts out as just a

collection of documents. To construct an inverted file, we must first create a set

of keyword-document pairs, (k, d), where k is a keyword and d is the identifier

for a document where k appears. Fortunately, constructing such a set of keyword-

document pairs is fairly easy—we can simply scan the contents of each document,

d, and output a pair, (k, d), for each keyword, k, found in d. Thus, we can assume

that we can start with a set of keyword-document pairs, from which we then want

to build an inverted file.

Building an inverted file data structure from a set of keyword-document pairs

requires that we bring together, for each keyword, k, all the documents that con-

tain k. Bringing all such documents together can be done simply by sorting the set

of keyword-document pairs by keywords. This places all the (k, d) pairs with the

same keyword, k, right next to one another in the output list. From this sorted list, it

is then a simple computation to scan the list and build a lookup table of documents

for each keyword that appears in this sorted list.

In practice, most search engines go one step further, and not only sort the set

of keyword-document pairs by keywords, but break ties between (k, d) pairs with

the same keyword, k, by using a relevance (or ranking) score for the document, d,

as a secondary key (following a lexicographic ordering rule). Taking this approach

implies that the (k, d) pairs with the same keyword, k, will be ordered in the sorted

list according to the score of their document, d. Thus, having a fast algorithm

for sorting can be very helpful for a search engine, particularly if that algorithm

is designed to work quickly for large sets of input data. We study two sorting

algorithms in this chapter. The first algorithm, called merge-sort, is ideally suited

for very large data sets, which must be accessed on a hard drive or network storage

system. The second algorithm, called quick-sort, is very efficient for moderately

large data sets that fit in the computer’s main memory (RAM).

8.1. Merge-Sort 243

8.1 Merge-Sort

In this section, we present a sorting technique, called merge-sort, that can be de-

scribed in a simple and compact way using recursion.

8.1.1 Divide-and-Conquer

Merge-sort is based on an algorithmic paradigm called divide-and-conquer. The

divide-and-conquer paradigm can be described in general terms as consisting of the

following three steps (see Figure 8.1):

1. Divide: If the input size is smaller than a certain threshold (say, 10 elements),

solve the problem directly using a straightforward method and return the so-

lution so obtained. Otherwise, divide the input data into two or more disjoint

subsets.

2. Recur: Recursively solve the subproblems associated with the subsets.

3. Conquer: Take the solutions to the subproblems and “merge” them into a

solution to the original problem.

Split list equally

S
1

S
2

2. Recur.

3. Merge.

1. Divide in half .

2. Recur.

Figure 8.1: A visual schematic of the divide-and-conquer paradigm, applied to a

problem involving a list that is divided equally in two in the divide step.

Merge-sort applies the divide-and-conquer technique to the sorting problem,

where, for the sake of generality, let us consider the sorting problem to take a

sequence, S, of objects as input, which could be represented with either a list or an

array, and returns S in sorted order.

244 Chapter 8. Merge-Sort and Quick-Sort

For the problem of sorting a sequence S with n elements, the three divide-and-

conquer steps are as follows:

1. Divide: If S has zero or one element, return S immediately; it is already

sorted. Otherwise (S has at least two elements), put the elements of S into

two sequences, S1 and S2, each containing about half of the elements of

S; that is, S1 contains the first ⌈n/2⌉ elements of S, and S2 contains the

remaining ⌊n/2⌋ elements.

2. Recur: Recursively sort the sequences S1 and S2.

3. Conquer: Put back the elements into S by merging the sorted sequences S1

and S2 into a sorted sequence.

We can visualize an execution of the merge-sort algorithm using a binary tree

T , called the merge-sort tree. (See Figure 8.2.) Each node of the merge-sort tree, T ,

represents a recursive call of the merge-sort algorithm. We associate with each node

v of T the sequence S that is processed by the call associated with v. The children

of node v are associated with the recursive calls that process the subsequences S1

and S2 of S. The external nodes of T are associated with individual elements of S,

corresponding to instances of the algorithm that make no recursive calls.

Figure 8.2 summarizes an execution of the merge-sort algorithm by showing

the input and output sequences processed at each node of the merge-sort tree. This

algorithm visualization in terms of the merge-sort tree helps us analyze the running

time of the merge-sort algorithm. In particular, since the size of the input sequence

roughly halves at each recursive call of merge-sort, the height of the merge-sort tree

is about log n (recall that the base of log is 2 if omitted).

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

85 24 63 45

85 24 63 45

17 31 96 50

17 31 96 50

17 24 31 45 50 63 85 96

24 45 63 85 17 31 50 96

24 85 45 63

85 24 63 45

17 31 50 96

17 31 96 50

(a) (b)

Figure 8.2: Merge-sort tree T for an execution of the merge-sort algorithm on a

sequence with eight elements: (a) input sequences processed at each node of T ;

(b) output sequences generated at each node of T .

8.1. Merge-Sort 245

Having given an overview of merge-sort and an illustration of how it works,

let us consider each of the steps of this divide-and-conquer algorithm in more de-

tail. The divide and recur steps of the merge-sort algorithm are simple; dividing a

sequence of size n involves separating it at the element with rank ⌈n/2⌉, and the

recursive calls simply involve passing these smaller sequences as parameters. The

difficult step is the conquer step, which merges two sorted sequences into a single

sorted sequence. We provide a pseudocode description of the method for merging

two sorted arrays in Algorithm 8.3. It merges two sorted arrays, S1 and S2, by

iteratively removing a smallest element from one of these two and adding it to the

end of an output array, S, until one of these two arrays is empty, at which point we

copy the remainder of the other array to the output array.

Algorithm merge(S1, S2, S):

Input: Two arrays, S1 and S2, of size n1 and n2, respectively, sorted in non-

decreasing order, and an empty array, S, of size at least n1 + n2

Output: S, containing the elements from S1 and S2 in sorted order

i ← 1
j ← 1
while i ≤ n and j ≤ n do

if S1[i] ≤ S2[j] then

S[i + j − 1] ← S1[i]
i ← i + 1

else

S[i + j − 1] ← S2[j]
j ← j + 1

while i ≤ n do

S[i + j − 1] ← S1[i]
i ← i + 1

while j ≤ n do

S[i + j − 1] ← S2[j]
j ← j + 1

Algorithm 8.3: Merging two sorted arrays, with indexing beginning at 1.

One of the nice properties of this merge algorithm is that the while loops involve

simple scans of the input arrays, S1 and S2. For large data sets, this kind of data

access is efficient, because of the sequential way that data is typically accessed in

external storage devices, like disk drives. The trade-off for this benefit, however,

is that we have to use an output array, S, rather than reusing the space in the input

arrays themselves.

If we want to merge two sorted sequences given as linked lists, instead of

arrays, then we would use a similar method to the array-based merge algorithm,

which would involve our comparing the front elements in the two lists, removing

246 Chapter 8. Merge-Sort and Quick-Sort

the smaller one from its list, and adding that element to the end of an output linked

list. Once one of the lists is empty, we would then copy the remainder of the other

list to the output list.

We show an example execution of a list-based merge algorithm in Figure 8.4.

24 45 63 85

17 31 50 96

S

S2

S1 24 45 63 85S1

17

31 50 96

S

S2

24

45 63 85

17

31 50 96

S

S2

S1

(a) (b) (c)

24

45 63 85S1

17

50 96

S 31

S2

24

63 85S1

17

50 96S2

S 31 45 24

63 85

17

96

S 31 45 50

S2

S1

(d) (e) (f)

24

85

17

96

S 31 45 50 63

S1

S2

2417

96

S 31 45 50 63 85

S1

S2

(g) (h)

2417S 31 45 50 63 85 96

S1

S2

(i)

Figure 8.4: Example execution of a merge algorithm for sorted linked lists.

Analysis of the Merge-Sort Algorithm

Our analysis for the merge-sort algorithm begins with the merge algorithm. Let

n1 and n2 be the number of elements of S1 and S2, respectively. Algorithm merge
has three while loops. The operations performed inside each loop take O(1) time

each. The key observation is that during each iteration of any one of the loops,

one element is added to the output array S and is never considered again. This

observation implies that the overall number of iterations of the three loops is n1 +

8.1. Merge-Sort 247

n2. Thus, the running time of algorithm merge is O(n1 + n2), as we summarize:

Theorem 8.1: Merging two sorted arrays S1 and S2 takes O(n1+n2) time, where

n1 is the size of S1 and n2 is the size of S2.

Having given the details of the merge algorithm, let us analyze the running

time of the entire merge-sort algorithm, assuming it is given an input sequence of

n elements. For simplicity, let us also assume n is a power of 2. We analyze the

merge-sort algorithm by referring to the merge-sort tree, T .

First, we analyze the height of the merge-sort tree, T , referring to Figure 8.5.

n

n/2

time per level
height

O(n)

O(n)

O(n)

Total time:

O(log n)

O(n log n)

n/2

n/4 n/4 n/4 n/4

Figure 8.5: A visual analysis of the running time of merge-sort. Each node of the

merge-sort tree is labeled with the size of its subproblem.

We observe that the length of the subsequence stored at a node of T with depth

(distance from the root) i is n/2i since we halve the length of the sequence each

time we go down one level. Thus, a node at depth i = log n stores a single-element

subsequence and therefore is a leaf of the tree. We conclude that the height of the

merge-sort tree is log n.

We call the time spent at a node v of T the running time of the recursive call

associated with v, excluding the time taken waiting for the recursive calls associated

with the children of v to terminate. In other words, the time spent at node v includes

the running times of the divide and conquer steps, but excludes the running time

of the recur step. We have already observed that the details of the divide step are

straightforward; this step runs in time proportional to the size of the sequence for v.

Also, as shown in Theorem 8.1, the conquer step, which consists of merging two

248 Chapter 8. Merge-Sort and Quick-Sort

sorted subsequences, also takes linear time. That is, letting i denote the depth of

node v, the time spent at node v is O(n/2i), since the size of the sequence handled

by the recursive call associated with v is equal to n/2i.

Looking at the tree T more globally, as shown in Figure 8.5, we see that, given

our definition of “time spent at a node,” the running time of merge-sort is equal to

the sum of the times spent at the nodes of T . Observe that T has exactly 2i nodes

at depth i. This simple observation has an important consequence, for it implies

that the overall time spent at all the nodes of T at depth i is O(2i · n/2i), which is

O(n). We have previously seen that the height of T is log n. Thus, since the time

spent at each of the log n + 1 levels of T is O(n), we have the following result:

Theorem 8.2: Merge-sort on sequence of n elements runs in O(n log n) time.

The above analysis was done under the simplifying assumption that n is a power

of 2. If this is not the case, the analysis becomes a bit more complicated.

Regarding the height of the merge-sort tree, we have:

Theorem 8.3: The merge-sort tree associated with an execution of merge-sort on

a sequence of size n has height ⌈log n⌉.

The justification of Theorem 8.3 is left to a simple exercise (R-8.1).

Finally, we leave it to another exercise (R-8.3) how to extend the rest of the

analysis of the running time of merge-sort to the general case when n is not a

power of 2.

8.1.2 Merge-Sort and Recurrence Equations

There is another way to justify that the running time of the merge-sort algorithm is

O(n log n). Let the function t(n) denote the worst-case running time of merge-sort

on an input sequence of size n. Since merge-sort is recursive, we can characterize

function t(n) by means of the following equalities, where function t(n) is recur-

sively expressed in terms of itself, as follows:

t(n) =

{

b if n = 1 or n = 0
t(⌈n/2⌉) + t(⌊n/2⌋) + cn otherwise

where b > 0 and c > 0 are constants. A characterization of a function such as

the one above is called a recurrence equation (Sections 1.1.4 and 11.1), since the

function appears on both the left- and right-hand sides of the equal sign. Although

such a characterization is correct and accurate, what we really desire is a big-Oh

type of characterization of t(n) that does not involve the function t(n) itself (that

is, we want a closed-form characterization of t(n)).
In order to provide a closed-form characterization of t(n), let us restrict our

attention to the case when n is a power of 2. We leave the problem of showing

8.1. Merge-Sort 249

that our asymptotic characterization still holds in the general case as an exercise

(R-8.3). In this case, we can simplify the definition of t(n) as follows:

t(n) =

{

b if n = 1
2t(n/2) + cn otherwise.

But, even so, we must still try to characterize this recurrence equation in a closed-

form way. One way to do this is to iteratively apply this equation, assuming n is

relatively large. For example, after one more application of this equation, we can

write a new recurrence for t(n) as follows:

t(n) = 2
(

2t
(

n/22
)

+ (cn/2)
)

+ cn

= 22t
(

n/22
)

+ 2cn.

If we apply the equation again, we get

t(n) = 23t
(

n/23
)

+ 3cn.

Applying the equation once again, we obtain

t(n) = 24t
(

n/24
)

+ 4cn.

Now, a clear pattern emerges, and we infer that after applying this equation i
times, we get

t(n) = 2it
(

n/2i
)

+ icn.

The issue that remains, then, is to determine when to stop this process. To see

when to stop, recall that we switch to the closed form t(n) = b when n = 1, which

occurs when 2i = n. In other words, this will occur when i = log n. Making this

substitution yields

t(n) = 2log nt
(

n/2log n
)

+ (log n)cn

= nt(1) + cn log n

= nb + cn log n.

That is, we get an alternative justification of the fact that t(n) is O(n log n).

250 Chapter 8. Merge-Sort and Quick-Sort

8.2 Quick-Sort

The quick-sort algorithm sorts a sequence S using a simple divide-and-conquer

approach, whereby we divide S into subsequences, recur to sort each subsequence,

and then combine the sorted subsequences by a simple concatenation. In particular,

the quick-sort algorithm consists of the following three steps (see Figure 8.6):

1. Divide: If S has at least two elements (nothing needs to be done if S has

zero or one element), select a specific element x from S, which is called the

pivot. As is common practice, choose the pivot x to be the last element in S.

Remove all the elements from S and put them into three sequences:

• L, storing the elements in S less than x

• E, storing the elements in S equal to x

• G, storing the elements in S greater than x.

(If the elements of S are all distinct, E holds just one element—the pivot.)

2. Recur: Recursively sort sequences L and G.

3. Conquer: Put the elements back into S in order by first inserting the elements

of L, then those of E, and finally those of G.

L (< x)

E (= x)

2. Recur.

3. Concatenate.

1. Split using pivot x.

2. Recur.

G (> x)

Figure 8.6: A visual schematic of the quick-sort algorithm.

8.2. Quick-Sort 251

Like merge-sort, we can visualize quick-sort using a binary recursion tree,

called the quick-sort tree. Figure 8.7 visualizes the quick-sort algorithm, show-

ing example input and output sequences for each node of the quick-sort tree.

85 63 96

24 17 45

24

85 63

85

85 24 63 45 17 31 96 50

24 45 17 31

(a)

63 85 96

17 24 45

24 85

17 24 31 45 50 63 85 96

17 24 31 45

63 85

(b)

Figure 8.7: Quick-sort tree T for an execution of the quick-sort algorithm on a

sequence with eight elements: (a) input sequences processed at each node of T ;

(b) output sequences generated at each node of T . The pivot used at each level of

the recursion is shown in bold.

Unlike merge-sort, however, the height of the quick-sort tree associated with an

execution of quick-sort is linear in the worst case. This happens, for example, if the

sequence consists of n distinct elements and is already sorted. Indeed, in this case,

the standard choice of the pivot as the largest element yields a subsequence L of

size n − 1, while subsequence E has size 1 and subsequence G has size 0. Hence,

the height of the quick-sort tree is n − 1 in the worst case.

252 Chapter 8. Merge-Sort and Quick-Sort

Running Time of Quick-Sort

We can analyze the running time of quick-sort with the same technique used for

merge-sort in Section 8.1.1. Namely, we identify the time spent at each node of the

quick-sort tree T (Figure 8.7) and we sum up the running times for all the nodes.

The divide step and the conquer step of quick-sort are easy to implement in linear

time. Thus, the time spent at a node v of T is proportional to the input size s(v)
of v, defined as the size of the sequence handled by the invocation of quick-sort

associated with node v. Since subsequence E has at least one element (the pivot),

the sum of the input sizes of the children of v is at most s(v) − 1.

Given a quick-sort tree T , let si denote the sum of the input sizes of the nodes

at depth i in T . Clearly, s0 = n, since the root r of T is associated with the entire

sequence. Also, s1 ≤ n − 1, since the pivot is not propagated to the children of r.

Consider next s2. If both children of r have nonzero input size, then s2 = n − 3.

Otherwise (one child of the root has zero size, the other has size n−1), s2 = n−2.

Thus, s2 ≤ n − 2. Continuing this line of reasoning, we obtain that si ≤ n − i.
As observed in Section 8.2, the height of T is n − 1 in the worst case. Thus,

the worst-case running time of quick-sort is

O

(

n−1
∑

i=0

si

)

, which is O

(

n−1
∑

i=0

(n − i)

)

that is, O

(

n
∑

i=1

i

)

.

By Theorem 1.13,
∑n

i=1 i is O(n2). Thus, quick-sort runs in O(n2) worst-case

time. Given its name, we would expect quick-sort to run quickly. However, the

above quadratic bound indicates that quick-sort is slow in the worst case. Paradoxi-

cally, this worst-case behavior occurs for problem instances when sorting should be

easy—if the sequence is already sorted. Still, note that the best case for quick-sort

on a sequence of distinct elements occurs when subsequences L and G happen to

have roughly the same size. Indeed, in this case we save one pivot at each internal

node and make two equal-sized calls for its children. Thus, we save 1 pivot at the

root, 2 at level 1, 22 at level 2, and so on. That is, in the best case, we have

s0 = n

s1 = n − 1

s2 = n − (1 + 2) = n − 3
...

si = n − (1 + 2 + 22 + · · · + 2i−1) = n − (2i − 1),

and so on. Thus, in the best case, T has height O(log n) and quick-sort runs in

O(n log n) time. We leave the justification of this fact as an exercise (R-8.6).

The informal intuition behind the expected behavior of quick-sort is that at each

invocation the pivot will probably divide the input sequence about equally. Thus,

we expect the average running time of quick-sort to be similar to the best-case

running time, that is, O(n log n). We will see in the next section that introducing

randomization makes quick-sort behave exactly as described above.

8.2. Quick-Sort 253

8.2.1 Randomized Quick-Sort

One common method for analyzing quick-sort is to assume that the pivot will al-

ways divide the sequence almost equally. We feel such an assumption would pre-

suppose knowledge about the input distribution that is typically not available, how-

ever. For example, we would have to assume that we will rarely be given “almost”

sorted sequences to sort, which are actually common in many applications. For-

tunately, this assumption is not needed in order for us to match our intuition to

quick-sort’s behavior.

Since the goal of the partition step of the quick-sort method is to divide the

sequence S almost equally, let us use a new rule to pick the pivot—choose a ran-

dom element of the input sequence. As we show next, the resulting algorithm,

called randomized quick-sort, has an expected running time of O(n log n) given a

sequence with n elements.

Theorem 8.4: The expected running time of randomized quick-sort on a sequence

of size n is O(n log n).

Proof: We make use of a simple fact from probability theory:

The expected number of times that a fair coin must be flipped until it

shows “heads” k times is 2k.

Consider now a particular recursive invocation of randomized quick-sort, and let m
denote the size of the input sequence for this invocation. Say that this invocation is

“good” if the pivot chosen creates subsequences L and G that have size at least m/4
and at most 3m/4 each. Since the pivot is chosen uniformly at random and there

are m/2 pivots for which this invocation is good, the probability that an invocation

is good is 1/2 (the same as the probability a coin comes up heads).

If a node v of the quick-sort tree T , as shown in Figure 8.8, is associated with

a “good” recursive call, then the input sizes of the children of v are each at most

3s(v)/4 (which is the same as s(v)/(4/3)). If we take any path in T from the root to

an external node, then the length of this path is at most the number of invocations

that have to be made (at each node on this path) until achieving log4/3 n good

invocations. Applying the probabilistic fact reviewed above, the expected number

of invocations we must make until this occurs is 2 log4/3 n (if a path terminates

before this level, that is all the better). Thus, the expected length of any path from

the root to an external node in T is O(log n). Recalling that the time spent at

each level of T is O(n), the expected running time of randomized quick-sort is

O(n log n).

We note that the expectation in the running time is taken over all the possible

choices the algorithm makes, and is independent of any assumptions about the dis-

tribution of input sequences the algorithm is likely to encounter. Actually, by using

powerful facts from probability, we can show that the running time of randomized

quick-sort is O(n log n) with high probability. (See Exercise C-8.4.)

254 Chapter 8. Merge-Sort and Quick-Sort

time per levelexpected height

total expected time:

O(n)

O(n)

O(n)
O(log n)

O(n log n)

s(a)

s(r)

s(b)

s(c) s(d) s(e) s(f)

Figure 8.8: A visual time analysis of the quick-sort tree T .

8.2.2 In-Place Quick-Sort

Recall from Section 5.4 that a sorting algorithm is in-place if it uses only a small

amount of memory in addition to that needed for the objects being sorted them-

selves. The merge-sort algorithm, as we have described it above, is not in-place,

and making it be in-place seems quite difficult. In-place sorting is not inherently

difficult, however. For, as with heap-sort, quick-sort can be adapted to be in-place.

Performing the quick-sort algorithm in-place requires a bit of ingenuity, how-

ever, for we must use an input array itself to store the subarrays for all the recursive

calls. We show algorithm inPlaceQuickSort, which performs in-place quick-sort,

in Algorithm 8.9. Algorithm inPlaceQuickSort assumes that the input array, S,

has distinct elements. The reason for this restriction is explored in Exercise R-8.7.

The extension to the general case is discussed in Exercise C-8.8.

In-place quick-sort modifies the input sequence using swapElements opera-

tions and does not explicitly create subsequences. Indeed, a subsequence of the

input sequence is implicitly represented by a range of positions specified by a left-

most rank l and a right-most rank r. The divide step is performed by scanning the

sequence simultaneously from l forward and from r backward, swapping pairs of

elements that are in reverse order, as shown in Figure 8.10. When these two in-

dices “meet,” subsequences L and G are on opposite sides of the meeting point.

The algorithm completes by recursing on these two subsequences. In-place quick-

sort reduces the running time, caused by the creation of new sequences and the

movement of elements between them, by a constant factor.

8.2. Quick-Sort 255

Algorithm inPlacePartition(S, a, b):

Input: An array, S, of distinct elements; integers a and b such that a ≤ b
Output: An integer, l, such that the subarray S[a .. b] is partitioned into S[a..l−

1] and S[l..b] so that every element in S[a..l− 1] is less than each element in

S[l..b]

Let r be a random integer in the range [a, b]
Swap S[r] and S[b]
p ← S[b] // the pivot

l ← a // l will scan rightward

r ← b − 1 // r will scan leftward

while l ≤ r do // find an element larger than the pivot

while l ≤ r and S[l] ≤ p do

l ← l + 1
while r ≥ l and S[r] ≥ p do // find an element smaller than the pivot

r ← r − 1
if l < r then

Swap S[l] and S[r]
Swap S[l] and S[b] // put the pivot into its final place

return l

Algorithm inPlaceQuickSort(S, a, b):

Input: An array, S, of distinct elements; integers a and b
Output: The subarray S[a .. b] arranged in nondecreasing order

if a ≥ b then return // subrange with 0 or 1 elements

l ← inPlacePartition(S, a, b)
inPlaceQuickSort(S, a, l − 1)
inPlaceQuickSort(S, l + 1, b)

Algorithm 8.9: In-place randomized quick-sort for an array, S.

Dealing with the Recursion Stack

Actually, the above description of quick-sort is not quite in-place, as it could, in the

worst case, require a linear amount of additional space besides the input array. Of

course, we are using no additional space for the subsequences, and we are using

only a constant amount of additional space for local variables (such as l and r).

So, where does this additional space come from?

It comes from the recursion, since we need space for a stack proportional to the

depth of the recursion tree in order to keep track of the recursive calls for quick-

sort. This stack can become as deep as Θ(n), in fact, if we have a series of bad

pivots, since we need to have a method frame for every active call when we make

the call for the deepest node in the quick-sort tree.

256 Chapter 8. Merge-Sort and Quick-Sort

85 24 63 45 17 31 96 50

rl

85 24 63 45 17 31 96 50

rl

(a) (b)

31 24 63 45 17 85 96 50

rl

31 24 63 45 17 85 96 50

rl

(c) (d)

31 24 17 45 63 85 96 50

rl

31 24 17 45 63 85 96 50

lr

(e) (f)

31 24 17 45 50 85 96 63

lr

(g)

Figure 8.10: An example execution of the inPlacePartition algorithm.

Fortunately, we can fix our quick-sort algorithm to actually be in-place, and use

only O(log n) additional space, by changing the way we do the recursive calls. The

key detail for such an implementation is that if we always do the recursive call for

the smaller subproblem first, then we can replace the second recursive call with a

loop, since it comes last. This ability to change a recursive call into an iteration if it

is the last operation in a recursive procedure is known as tail recursion. The details

are shown in Algorithm 8.11.

The depth of recursion and, hence, the amount of additional space used for

the method stack in Algorithm 8.11 is O(log n). To see this, note that by doing

a recursive call only for the smaller subproblem each time, we guarantee that the

size of any recursive subproblem is at most half the size of the subproblem that is

making that call. Thus, the depth of the recursion stack is never more than O(log n).

Algorithm CorrectInPlaceQuickSort(S, a, b):

Input: An array, S, of distinct elements; integers a and b
Output: The subarray S[a .. b] arranged in nondecreasing order

while a < b do

l ← inPlacePartition(S, a, b) // from Algorithm 8.9

if l − a < b − l then // first subarray is smaller

CorrectInPlaceQuickSort(S, a, l − 1)
a ← l + 1

else

CorrectInPlaceQuickSort(S, l + 1, b)
b ← l − 1

Algorithm 8.11: Correct version of in-place randomized quick-sort for an array, S.

8.3. A Lower Bound on Comparison-Based Sorting 257

8.3 A Lower Bound on Comparison-Based Sorting

Recapping our discussions on sorting to this point, we have described several meth-

ods with either a worst-case or expected running time of O(n log n) on an input

sequence of size n. These methods include merge-sort and quick-sort, described in

this chapter, as well as heap-sort, described in Section 5.4. A natural question to

ask, then, is whether it is possible to sort any faster than in O(n log n) time.

In this section, we show that if the computational primitive used by a sort-

ing algorithm is the comparison of two elements, then this is the best we can

do—comparison-based sorting has an Ω(n log n) worst-case lower bound on its

running time. (Recall the notation Ω(·) from Section 1.1.5.) To focus on the main

cost of comparison-based sorting, let us only count the comparisons that a sorting

algorithm performs. Since we want to derive a lower bound, this will be sufficient.

Suppose we are given a sequence S = (x1, x2, . . . , xn) that we wish to sort, and

let us assume that all the elements of S are distinct (this is not a restriction since we

are deriving a lower bound). Each time a sorting algorithm compares two elements

xi and xj (that is, it asks, “is xi < xj?”), there are two outcomes: “yes” or “no.”

Based on the result of this comparison, the sorting algorithm may perform some

internal calculations (which we are not counting here) and will eventually perform

another comparison between two other elements of S, which again will have two

outcomes. Therefore, we can represent a comparison-based sorting algorithm with

a decision tree T . That is, each internal node v in T corresponds to a comparison

and the edges from node v ′ to its children correspond to the computations resulting

from either a “yes” or “no” answer (see Figure 8.12).

It is important to note that the hypothetical sorting algorithm in question prob-

ably has no explicit knowledge of the tree T . We simply use T to represent all the

possible sequences of comparisons that a sorting algorithm might make, starting

from the first comparison (associated with the root) and ending with the last com-

parison (associated with the parent of an external node) just before the algorithm

terminates its execution.

Each possible initial ordering, or permutation, of the elements in S will cause

our hypothetical sorting algorithm to execute a series of comparisons, traversing a

path in T from the root to some external node. Let us associate with each external

node v in T , then, the set of permutations of S that cause our sorting algorithm to

end up in v. The most important observation in our lower-bound argument is that

each external node v in T can represent the sequence of comparisons for at most

one permutation of S. The justification for this claim is simple: if two different

permutations P1 and P2 of S are associated with the same external node, then there

are at least two objects xi and xj , such that xi is before xj in P1 but xi is after xj

in P2. At the same time, the output associated with v must be a specific reordering

of S, with either xi or xj appearing before the other. But if P1 and P2 both cause

the sorting algorithm to output the elements of S in this order, then that implies

258 Chapter 8. Merge-Sort and Quick-Sort

there is a way to trick the algorithm into outputting xi and xj in the wrong order.

Since this cannot be allowed by a correct sorting algorithm, each external node of

T must be associated with exactly one permutation of S. We use this property of

the decision tree associated with a sorting algorithm to prove the following result:

Theorem 8.5: The running time of any comparison-based algorithm for sorting

an n-element sequence is Ω(n log n) in the worst case.

Proof: The running time of a comparison-based sorting algorithm must be

greater than or equal to the height of the decision tree T associated with this al-

gorithm, as described above. (See Figure 8.12.) By the above argument, each

external node in T must be associated with one permutation of S. Moreover, each

permutation of S must result in a different external node of T . The number of

permutations of n objects is

n! = n(n − 1)(n − 2) · · · 2 · 1.

Thus, T must have at least n! external nodes. By Theorem 2.7, the height of T is

at least log(n!). This immediately justifies the theorem, because there are at least

n/2 terms that are greater than or equal to n/2 in the product n!; hence

log(n!) ≥ log
(n

2

)
n

2

=
n

2
log

n

2
,

which is Ω(n log n).

minimum height (time)

log (n!)

n!

xi < xj ?

xa < xb ?

xe < xf ? xk < xl ? xm < xo ? xp < xq ?

xc < xd ?

Figure 8.12: Visualizing the lower bound for comparison-based sorting.

8.4. Exercises 259

8.4 Exercises

Reinforcement

R-8.1 Give a complete justification of Theorem 8.3.

R-8.2 Give a pseudocode description of the merge-sort algorithm assuming the input is

given as a linked list.

R-8.3 Show that the running time of the merge-sort algorithm on an n-element sequence

is O(n log n), even when n is not a power of 2.

R-8.4 Suppose we modify the deterministic version of the quick-sort algorithm so that,

instead of selecting the last element in an n-element sequence as the pivot, we

choose the element at index ⌊n/2⌋, that is, an element in the middle of the se-

quence. What is the running time of this version of quick-sort on a sequence that

is already sorted?

R-8.5 Consider again the modification of the deterministic version of the quick-sort al-

gorithm so that, instead of selecting the last element in an n-element sequence as

the pivot, we choose the element at index ⌊n/2⌋. Describe the kind of sequence

that would cause this version of quick-sort to run in Θ(n2) time.

R-8.6 Show that the best-case running time of quick-sort on a sequence of size n with

distinct elements is O(n log n).

R-8.7 Suppose that algorithm inPlaceQuickSort (Algorithm 8.9) is executed on a se-

quence with duplicate elements. Show that, in this case, the algorithm correctly

sorts the input sequence, but the result of the divide step may differ from the

high-level description given in Section 8.2 and may result in inefficiencies. In

particular, what happens in the partition step when there are elements equal to

the pivot? What is the running time of the algorithm if all the elements of the

input sequence are equal?

Creativity

C-8.1 Describe a variation of the merge-sort algorithm that is given a single array, S,

as input, and uses only an additional array, T , as a workspace. No other memory

should be used other than a constant number of variables.

C-8.2 Let A be a collection of objects. Describe an efficient method for converting A
into a set. That is, remove all duplicates from A. What is the running time of this

method?

C-8.3 Suppose we are given two n-element sorted sequences A and B that should not

be viewed as sets (that is, A and B may contain duplicate entries). Describe an

O(n)-time method for computing a sequence representing the set A ∪ B (with

no duplicates).

260 Chapter 8. Merge-Sort and Quick-Sort

C-8.4 Show that randomized quick-sort runs in O(n log n) time with probability 1 −
1/n2.

Hint: Use the Chernoff bound that states that if we flip a coin k times, then the

probability that we get fewer than k/16 heads is less than 2−k/8.

C-8.5 Suppose we are given a sequence S of n elements, each of which is colored

red or blue. Assuming S is represented as an array, give an in-place method for

ordering S so that all the blue elements are listed before all the red elements. Can

you extend your approach to three colors?

C-8.6 Suppose we are given two sequences A and B of n elements, possibly contain-

ing duplicates, on which a total order relation is defined. Describe an efficient

algorithm for determining if A and B contain the same set of elements (possibly

in different orders). What is the running time of this method?

C-8.7 Suppose we are given a sequence S of n elements, on which a total order relation

is defined. Describe an efficient method for determining whether there are two

equal elements in S. What is the running time of your method?

C-8.8 Modify Algorithm inPlaceQuickSort (Algorithm 8.9) to handle the general case

efficiently when the input array, S, may have duplicate keys.

C-8.9 Let S be an array of n elements on which a total order relation is defined. An

inversion in S is a pair of indices i and j such that i < j but S[i] > S[j].
Describe an algorithm running in O(n log n) time for determining the number

of inversions in S (which can be as large as O(n2)).

Hint: Try to modify the merge-sort algorithm to solve this problem.

C-8.10 Give an example of a sequence of n integers with Ω(n2) inversions. (Recall the

definition of inversion from Exercise C-8.9.)

C-8.11 Let A and B be two sequences of n integers each. Given an integer x, describe

an O(n log n)-time algorithm for determining if there is an integer a in A and an

integer b in B such that x = a + b.

C-8.12 Given a sequence of numbers, (x1, x2, . . . , xn), the mode is the value that ap-

pears the most number of times in this sequence. Give an efficient algorithm to

compute the mode for a sequence of n numbers. What is the running time of

your method?

C-8.13 Suppose you would like to sort n music files, but you only have an old, unreli-

able computer, which you have nicknamed “Rustbucket.” Every time Rustbucket

compares two music files, x and y, there is an independent 50-50 chance that it

has an internal disk fault and returns the value 0, instead of the correct result, 1,

for “true” or −1, for “false,” to the question, “x ≤ y?” That is, for each compar-

ison of music files that Rustbucket is asked to perform, it is as if it flips a fair coin

and answers the comparison correctly if the coin turns up “heads” and answers

with 0 if the coin turns up “tails.” Moreover, this behavior occurs independent

of previous comparison requests, even for the same pair of music files. Other-

wise, Rustbucket correctly performs every other kind of operation (not involving

the comparison of two music files), including if-statements, for-loops, and while-

loops based on comparisons of integers. Describe an efficient algorithm that can

use Rustbucket to sort n music files correctly and show that your algorithm has

an expected running time that is O(n log n).

8.4. Exercises 261

Applications

A-8.1 Suppose you are given a new hardware device that can merge k > 2 different

sorted lists of total size n into a single sorted list in O(n) time, independent

of the value of k. Such a device could, for example, be based on a hardware

streaming system or could be based on a network protocol. Show that you can

use this device to sort n elements in O(n log n / log k) time. That is, if k is

Θ(
√

n), then you can use this device to sort in linear time.

A-8.2 Suppose we are given an n-element sequence S such that each element in S
represents a different vote in an election, where each vote is given as an inte-

ger representing the ID of the chosen candidate. Without making any assump-

tions about who is running or even how many candidates there are, design an

O(n log n)-time algorithm to see who wins the election S represents, assuming

the candidate with the most votes wins.

A-8.3 Consider the voting problem from the previous exercise, but now suppose that

we know the number k < n of candidates running. Describe an O(n log k)-time

algorithm for determining who wins the election.

A-8.4 Bob has a set, A, of n nuts and a set, B, of n bolts, such that each nut has a unique

matching bolt. Unfortunately, the nuts in A all look the same, and the bolts in

B all look the same as well. The only comparison that Bob can make is to take

a nut-bolt pair (a, b), such that a ∈ A and b ∈ B, and test if the threads of a
are larger, smaller, or a perfect match with the threads of b. Describe an efficient

algorithm for Bob to match up all of his nuts and bolts. What is the running time

of this algorithm?

A-8.5 As mentioned above, for each word, w, in a collection of documents, an inverted

file stores a list of documents that contain the word, w. In addition, search en-

gines typically order the list for each word by a ranking score. Modern search

engines must be able to answer more than just single-word queries, however. De-

scribe an efficient method for computing a list of the documents that contain two

words, w and u, ordered by the ranking scores assigned to the documents. What

is the running time of your method in terms of nw and nu, the respective sizes of

the lists for w and u?

A-8.6 In cloud computing, it is common for a client, “Alice,” to store her data on an

external server owned by a cloud storage provider, “Bob.” Because Bob is likely

to be honest, but curious, Alice wants to keep the contents of her data private

from Bob. Of course, she can encrypt her data using a secret key that only she

knows, but that is not enough, since she may reveal information about her data

simply based on the pattern in which she accesses her data. Since Bob can see

the access pattern for Alice’s data, even if she encrypts it, Alice should consider

using an algorithm that has a data access pattern that does not depend on any of

its input values. Such an algorithm is said to be data-oblivious. Suppose, then,

that Alice wants to sort an array, A, of elements stored on Bob’s computer, but do

so in a data-oblivious fashion, so that she sorts privately, even though each time

she accesses some item, A[i], in the array, A, Bob learns that she is accessing

the item at index i. She can use a constant amount of local private memory, e.g.,

to store indices, pointers, or to perform a comparison and swap, if the elements

262 Chapter 8. Merge-Sort and Quick-Sort

Algorithm OddEvenMerge(A, B, C):
Input: Two sorted arrays, A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn], and an

empty array, C, of size 2n
Output: C, containing the elements from A and B in sorted order
Let O1 ← [a1, a3, a5, . . . , an−1]
Let O2 ← [b1, b3, b5, . . . , bn−1]
Let E1 ← [a2, a4, a6, . . . , an]
Let E2 ← [b2, b4, b6, . . . , bn]
Call OddEvenMerge(O1, O2, O), where O = [o1, o2, . . . , on]
Call OddEvenMerge(E1, E2, E), where E = [e1, e2, . . . , en]
Let C ← [o1, e1, o2, e2, . . . , on, en]
for i ← 1 to n do

Do a compare-exchange of C[2i − 1] and C[2i]
return C

Algorithm 8.13: Odd-even merge.

are out of order, as an atomic action called a compare-exchange. For example,

she could use bubble-sort (Algorithm 5.20) to sort A, since this algorithms is

data-oblivious when implemented using the compare-exchange primitive. But

this would require O(n2) time, which is quite inefficient for solving the sorting

problem. An alternative is to use the odd-even merge-sort algorithm, which is

the same as the merge-sort algorithm given above, except that the merge step is

replaced with the merge method shown in Algorithm 8.13. Argue why the odd-

even merge-sort algorithm is data-oblivious, and analyze the running time of the

resulting sorting algorithm.

A-8.7 In computer games and also in simulations of card-playing scenarios, we some-

times need to use a computer to simulate the way that person would shuffle a deck

of cards. Given two decks of n cards each, the riffle shuffle algorithm involves

repeatedly choosing one of the two decks at random and then removing the bot-

tom card from that deck and placing that card on the top of an output deck. This

card-choosing step is repeated until all the original cards are placed in the output

deck. Define a recursive-riffle algorithm, which cuts a deck of n cards into two

decks of n/2 each, where n is a power of 2, and then calls the recursive-riffle

algorithm on each half. When these recursive calls return, the recursive-riffle

algorithm then performs a riffle shuffle of the two decks to produce the shuffled

result. Show that every card in the original deck has an equal probability of be-

ing the top card after a recursive-riffle is performed on the deck, and analyze the

running time of the recursive-riffle algorithm using a recurrence equation.

A-8.8 Many states require that candidate names appear on a ballot in random order, so

as to minimize biases that can arise from the order in which candidate names

appear on a ballot for a given election. For instance, in the 2012 general election,

the Secretary of State of California performed a random drawing that determined

that candidate names for that election must appear in alphabetical order based on

the following ordering of letters:

(I,X,C,A,P,U,Z,S,W,H,K,T,D,F,Q,V,G,M,R,J,L,Y,E,B,P,N).

8.4. Exercises 263

For example, if three candidates in that election had the last names, “BROWN,”

“BLACK,” and “WHITE,” then they would appear on the ballot in the order,

(WHITE, BROWN, BLACK). Describe an efficient algorithm that takes, as input,

an array, A, specifying an ordering of letters such as this, and a collection of

names, and sorts the collection of names using a lexicographic order based on

the alternative ordering of letters given in A. What is the running time of your

method in terms of m, the size of the array, A, and n, the number of names to be

sorted? (You may assume the length of each name is bounded by some constant,

but you may not assume that m or n is a constant.)

A-8.9 A floating-point number is a pair, (m, d), of integers, which represents the num-

ber m × bd, where b is either 2 or 10. In any real-world programming environ-

ment, the sizes of m and d are limited; hence, each arithmetic operation involving

two floating-point numbers may have some roundoff error. The traditional way

to account for this error is to introduce a machine precision parameter, ǫ < 1,

for the given programming environment, and bound roundoff errors in terms of

this parameter. For instance, in the case of floating-point addition, fl(x + y), for

summing two floating-point numbers, x and y, we can write

fl(x + y) = (x + y) · (1 + δx,y),

where |δx,y| ≤ ǫ. Consider, then, using an accumulation algorithm for summing

a sequence, (x1, x2, . . . , xn), of positive floating-point numbers, as shown in

Algorithm 8.14. Assuming that ǫ is small enough so that ǫ2 times any floating-

point number is negligibly small, then we can use a term, en, to estimate an upper

bound for the roundoff error for summing these numbers in this way as

en = ǫ
n

∑

i=1

(n − i + 1)xi.

Prove that the optimal order for summing any set of n positive floating-point

number according to the standard accumulation algorithm, so as to minimize the

error term, en, is to sum them in nondecreasing order. Also, give an O(n log n)-
time method for arranging the numbers in the sequence (x1, x2, . . . , xn) so that

the standard accumulation summation algorithm minimizes the error term, en.

Algorithm FloatSum(x1, x2, . . . , xn):
Input: A sequence, (x1, x2 . . . , xn), of n positive floating-point numbers

Output: A floating-point representation of the sum of the n numbers
s ← 0.0
for i ← 1 to n do

s ← fl(s + xi)
return s

Algorithm 8.14: An accumulation algorithm for summing n floating-point numbers.

264 Chapter 8. Merge-Sort and Quick-Sort

Chapter Notes

Knuth’s classic text on Sorting and Searching [131] contains an extensive history of the

sorting problem and algorithms for solving it, starting with the census card sorting ma-

chines of the late 19th century. Huang and Langston [107] describe how to merge two

sorted lists in-place in linear time. The standard quick-sort algorithm is due to Hoare [100].

A tighter analysis of randomized quick-sort can be found in the book by Motwani and

Raghavan [162]. Gonnet and Baeza-Yates [85] provide experimental comparisons and the-

oretical analyses of a number of different sorting algorithms. Kao and Wang [115] study

the problem of minimizing the numerical error in summing n floating-point numbers.

